
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999 1757

Image Representations Using
Multiscale Differential Operators

Yu-Ping Wang

Abstract—Differential operators have been widely used for
multiscale geometric descriptions of images. The efficient compu-
tation of these differential operators is always desirable. More-
over, it has not been clear whether such representations are
invertible. For certain applications, it is usually required that
such representations should be invertible so that one can facilitate
the processing of information in the transform domain and
then recover it. In this paper, such problems are studied. We
consider multiscale differential representations of images using
different types of operators such as the directional derivative
operators and Laplacian operators. In particular, we provide
a general approach to represent images by their multiscale
and multidirectional derivative components. For practical imple-
mentation, efficient pyramid-like algorithms are derived using
spline technique for both the decomposition and reconstruction
of images. It is shown that using these representations various
meaningful geometric information of images can be extracted at
multiple scales; therefore, these representations can be used for
edge based image processing purposes. Furthermore, the intrinsic
relationships of the proposed representations with the compact
wavelet models, and some classical multiscale approaches are also
elucidated in the paper.

Index Terms—BBB-splines, computer vision, edge detection, im-
age representation, scale-space, wavelet.

I. INTRODUCTION

T HE GEOMETRY of images is usually characterized using
differential or difference operators such as the gradient

operators, Laplacian operators and compass operators [29].
One of the most important geometric features of images
is edges; they usually reflect the irregular structures and
abrupt luminance changes of the image which are suitable for
pattern recognition. However, it is well-known from both the
psychophysical and physiological experiments that the edges
of images are captured in the visual context of mammals at
different resolution level. Therefore, the characterization of
image features must be in a multiscale sense. Many researchers
notably Burt and Adelson [1], Marr [3], Witkin [4], and
Rosenfeld [38] have developed various scale-space approaches
for multiscale information descriptions of images. As a new
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development of the classical scale-space theory, wavelets
provide a more formal framework for multiscale representation
[8], [11].

The general multiscale operation can be formulated using
the following continuous wavelet transform:

(1)

where is the scaled wavelet. In
the classical scale-space theory, two frequently used operators
are Marr–Hildreth operator [3] and Canny operator [5]. The
wavelets are approximately the first and second derivatives
of Gaussian. For two-dimensional (2-D) images, they are ap-
proximately the gradient operators of Gaussian and Laplacian
of Gaussian (LoG). Edges are usually detected by examining
either the local maxima or the zero-crossings of the resulting
images convoluted with these two operators. Other image fea-
tures such as the ridges, corners, blobs and junctions are also
characterized by the local differential descriptors [17], [18]. In
other applications such as the depth-from-stereo and optical
flow, the gradient estimation is the first stage. The efficient
computation of these differential operators is always desirable.
Due to the high computational complexity of Gaussian kernel
at large scales, there has been consistent interest in efficient
computation of multiscale differential operators. For example,
see Burt [1] and [2], Deriche [23], Wells [24], and Ferrariet
al. [25]. Also, it has not been clear whether images can be
recovered from these multiscale differential components. For
some applications it usually requires that such representations
are invertible so that one can facilitate the processing of
information in the transform domain and then recover it.

In this paper, we aim at providing efficient algorithms
for multiscale computation and representation of images us-
ing differential operators starting with the standard-spline
theory. Because -splines provide stable and hierarchical
representations [22] and have other good properties [13], we
use -splines to first parameterize the image surface and then
compute the differential operations. These differential oper-
ators include the directional derivative operators, Laplacian
operators and multidirectional derivative operators. Similar to
the wavelets design, we also derive pyramid-like filter bank
algorithms for the decomposition and synthesis of images
using these differential operators. Different from the compact
wavelets models [8], the derived representations areshift-
invariant and have explicit physical meaning which are very
suitable for geometry based image processing.
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The rest of the paper is organized as follows. In Section II,
we provide basic multiscale spline approximation theory and
discuss the comparison of-splines with the classical scale-
space kernels. In Section III, 1-D signal representations us-
ing the first and second order derivatives or differences are
considered. Both the recursive and parallel algorithms are
investigated. All the filters for the discrete implementations
of decomposition and reconstruction are given explicitly as
binomials which only needaddition operation. Extensions to
2-D images are given in Section IV, where the representations
of the images using multiscale second directional derivative
operators and Laplacian operators are considered in detail.
In the following section, a general procedure is presented
to decompose and reconstruct images from their multiscale
and multidirectional derivative components. Finally, some
discussions and conclusions are given.

II. M ULTIRESOLUTION POLYNOMIAL SPLINE

FUNCTION APPROXIMATION OF

A. Multiresolution Spline Function Approximation of

Suppose is the Hilbert space of finite energy func-
tions and is the space of finite energy discrete sequences.
Let and define the polynomial spline space
consisting of the dilated and shifted-splines of order (
is assumed to be odd throughout the paper) by

(2)

where . is defined as the central
continuous -spline of order , which can be generated by

-fold convolution of the -spline of order 0

(3)

where the zeroth-order -spline is the unit pulse
function with the support . It is easy to show
that the Fourier transform of is

(4)

It can be shown that the -spline spaces constitute a
multiresolution of [22]:

(5)

(6)

The embedding property (5) follows from the fact that-
splines are -refinable, i.e., it should satisfy the following

-scale relation:

(7)

where

is the discrete -spline of order at scale and
is a normalized sampled pulse of width

. The -refinability of the -splines indicated in (7) can be
easily verified [22].

Property (6) indicates that any signal can be
projected as a weighted sum of translated and dilated-splines
in the certain resolution space (suppose one for simplicity)

(8)

and the coefficients can be computed efficiently
[16]. Moreover, as proved in [22], the shifted-splines are
the only spline bases which are-refinable and constitute
Riesz bases, i.e.,

with (9)

Therefore, this energy equivalence guarantees that such an
approximation is also numerically stable. Different resolution
levels imply different effects of smoothing. The larger is the
value of scale , the better the smoothing effect of the signal
or less influence of the noise. But, conversely the less accurate
is the edge localization.

If we restrict the scales to be dyadic, from (5) the following
simple relation can be derived:

(10)

From the fact that the spline function spaces are nested
we know that the basis functions at the coarser levels are them-
selves included in the finer resolution spaces. In particular, we
have the following two-scale relation:

(11)

or equivalently in the Fourier domain

(12)

where

(13)

It is easy to infer through the binomial expansion that the
corresponding finite impulse responses (FIR’s) are

if

elsewhere

(14)

where is the binomial coefficient.
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Fig. 1. Comparison of the lower orderB-splines (in solid line) with the Gaussian function (in dotted line). They have the approximate relation
�n(x) � 6=�(n+ 1) exp(�(6x2=n + 1)). Higher order ofB-splines, closer approximations to Gaussian.

It can be shown easily that in the discrete setting the above
conclusion also holds in if we take the spatial variable

as integer [15].

B. Comparison with Some Scale-Space Kernels

As shown above, one of the prominent properties of-
splines is that they can provide stable and hierarchical repre-
sentation of a signal at different scales. For other advantages
of -spline technique, refer to [13]. In particular,-splines
are good approximations to the Gaussian kernel which is
commonly used in computer vision. A more rigorous proof
as well as the numerical evidence underlining the uncertainty
principle was given in [14], which showed that both-splines
and their Fourier transforms converge to the Gaussian function
in as the order of the splinetends to infinity.
This is illustrated in Fig. 1. Although Gaussian is regarded as
the only kernel that has the scaling property for multiscale
representation [36], [37], from the regularity theory, the cubic

-spline is regarded as optimal for edge detection [12]. The
comparison of -spline filters with Gaussian and other famous
filter windows can be found in [19].

It is quite interesting in the formulation of discrete scale-
space theory [18], the Gaussian kernel was discretized in
the spatial domain and approximated by a family of kernels

, where are the modified
Bessel functions of integer order andindexes the continuous
scale. The discrete -spline or binomial filters and these
kernels can be classified in terms of total positivity theory.
All shift invariant discrete scale-space kernels are equivalent
to normalized ṕolya frequencies and the discrete scale-space
kernels of finite support arise from generalized binomial
smoothing. The one-dimensional (1-D)-spline filters should
be a specialized class of transition operators in discrete linear
scale-space theory [18]. Like these discrete kernels in [18],

-splines are used for computational efficiency as will be
discussed in the following sections.

III. 1-D SIGNAL REPRESENTATION BY ITS

MULTISCALE DIFFERENTIAL OPERATORS

We begin with the 1-D case. We have the signal approxi-
mation (8) at the finest scale space, and want to analyze
the geometric information in the coarser scale space .
For this purpose, the following wavelets are defined.

A. The Choices of Spline Wavelets

Since the geometrical features are characterized by the
differential operators, the wavelets in (1) are usually taken as
the th-order derivatives of a smooth function. Equivalently,
the wavelets are required to satisfy the following vanishing
moments condition:

(15)

Since -splines constitute stable bases of or ,
we use the -splines to approximate or represent the wavelets
too. The advantage of this approach is due to the computational
efficiency and the fast computation of the continuous wavelet
transform (1) or scale-space filtering at any rational scales can
be obtained [20].

We give some typical choices of the spline wavelets.

• Canny Operator-Like Wavelets:Because of the close ap-
proximations of -splines to Gaussian, we choose the

-spline wavelets to be the first derivative or difference
of -splines which are similar to the Canny operator [5].
The -spline wavelets of order are taken as the first
derivatives of -splines of order at the resolution

.

(16)
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which are also the first-order of differences of-splines
of order at the resolution [20]. Equivalently, in the
Fourier domain, they can be written as

(17)

• LoG-Like Wavelets:Similarly, if we take the wavelets as
the second order derivatives of-splines, we will obtain
the LoG-like or Mexican hat like wavelets [3]. In detail,
the wavelets are given as

(18)

or equivalently in the Fourier domain

(19)

which are also the second order differences of-splines
of order at the resolution level .

• DoG-Like Wavelets:If we take the spline wavelets as the
difference of -splines at the adjacent resolutions, we
obtain the DoG-like wavelets [7]:

(20)

Since -splines are good approximations to Gaussian, the
wavelets selected above are good approximations to some
famous classical operators [3], [5], [7]. It is easy to verify that
these wavelets have one and two vanishing moments. Different
order of vanishing moments can detect edges with different
singularities [10].

The graphs of the first two spline wavelets of order
are shown in Fig. 2. They are symmetric and antisymmetric,
respectively.

B. Fast Recursive Algorithms for the
Decomposition and Reconstruction

When selecting the wavelets as in (16), (18), and (20) one
can extract the geometric information at coarser scale approx-
imation from the finest scale approximation .
Through the refinable properties of the-splines (7), fast
algorithm at rational scales was achieved [20]. Here we restrict
to the dyadic scales to obtain more compact multiscale
representations of signals, which are called thedyadic wavelet
transforms.

First, it can be shown that our selected wavelets (16) and
(18) satisfy the following two-scale relations with the scaling
function of -splines:

(21)

(a)

(a)

Fig. 2. CubicB-spline wavelets: (a) Canny operator-like wavelets and (b)
LoG-like wavelets.

or in the Frequency domain

(22)

If the wavelets are taken as (16) and (18), we can obtain
the explicit expressions of the transfer function and the
corresponding FIR’s in the time domain.

• If the wavelets are taken as (16), then
and the corresponding FIR’s are

(23)

which is the first-order difference operator, modulo a shift
.

• If are chosen as (18), then
and the corresponding FIR’s are

(24)
which is the second-order difference operator.

If the following smoothing operations and wavelet
transforms are introduced:

(25)

one can see that the wavelet transforms are just the
first and second derivatives of the signal smoothed
by the -splines along the resolutions . By the two-
scale relation (11), (21), the following recursive algorithm can
be obtained

(26)
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In addition, if we define theupsampling operation of a
sequence by an integer multiple as , then the
above decomposition formula can be simply written as

(27)

This algorithm can be called thepyramid-like algorithm. In
comparison with the standard wavelets pyramid algorithm [8],
at each scale decomposition no down-sampling is done.
is usually taken as the original sampled signal .
Or more accurately, it can be computed using the efficient
algorithm proposed in [16]. The complexity of the recursive
algorithm (26) or (27) is .

In order to make the above decomposition procedure to be
invertible, we design the reconstruction filters and to
satisfy the following perfect reconstruction condition [8], [11]

(28)

For simplicity, we just take the synthesis filter as
( ). Then through (28) we can derive the explicit
expression of and the corresponding FIR’s.

• If is taken as (16), then by (13) and (23)

(29)
and the corresponding FIR’s are shown in (30), at the
bottom of the page.

• If is defined as (18), then by (13) and (24)

(31)

and the corresponding FIR’s are

otherwise.

(32)

Through (11) and (21) and the inverse Fourier transform of
the reconstruction condition (28), one can reconstruct signal

from its dyadic wavelet transforms

using the following formula

(33)

or simply written as

(34)

Furthermore, if we define the reconstructing filter by

(35)

it is easy to show through (28) that the signal
can be reconstructed from its dyadic wavelet transforms or
derivative components in the continuous form as

(36)

The dyadic wavelet transforms of a simulated signal con-
sisting of different types of edges using the cubic wavelets are
illustrated in Fig. 3. The behaviors of the edges across several
scales are displayed.

If the wavelets are taken as (20), the corresponding wavelet
decompositions are just the differences of two different
smoothing operations

and the reconstruction formula reads

In [6] a family of recursive filters are proposed, which is
optimized according to the criteria similar to Canny [5]. Hence,
they are more suitable for edge detection applications. But
a little bit more computational costs are needed than ours.
Moreover, the reconstruction system that these filters satisfy
is more strict than ours as in (28). For our designand
are not required to be a quadrature pair in (28).

otherwise

(30)
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Fig. 3. Dyadic spline wavelet decomposition and reconstruction of a simulated signal containing different types of edges. At the top row is the simulated
signal, at the bottom row is the reconstructed signal. Left: using the Canny operator-like wavelets. Right: using the LoG-like wavelets.

Fig. 4. Parallel realization of the algorithm. Every filter in the diagram can be realized only byaddition and bit shift operation.

C. Parallel Implementation and Improvement
of Computational Speed

One can have a parallel implementation of the dyadic
wavelet transforms without resorting to the recursive pyramid-
like algorithms (26) and (33). This is illustrated in Fig. 4. The
intrinsic relations between the filter banks, binomial and the
spline wavelets are discussed in Appendix A.

The smooth approximations and the wavelet
transforms along different scales can be com-
puted simultaneously and directly from the finest scale ap-
proximation using the following formula:

(37)
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The binomial filter can be obtained easily from the
following iterative relation:

(38)
and is obtained by taking the first- or second-order
difference of the sequence with a spacing . The
frequency responses of these filters are given as (74) and (75)
in Appendix A.

In the meantime, since all the filters are linear
combinations of binomials, the computational efficiency can
be further improved using thePascal triangular algorithm. In
detail, due to the following identity:

the convolution with a th binomial can be realized us-
ing only addition operation recursively from zeroth binomial
(unit impulse). The last normalization factor can
be implemented directly by the operation ofbit shift rather
than multiplication. We can call this method as themoving
average sum technology, which lead to an easy hardware
realization. The complexity of approach is and hence
an improvement over the recursive algorithms (26) and (33)
with the complexity .

IV. EXTENSION TO 2-D IMAGES

A. Decomposition and Reconstruction of an Image from
Its Directional Derivative Components

The above results for 1-D signal can be easily extended to
the 2-D case. By tensor product, the 2-D smoothing function is
taken as . Now we show
how images can be decomposed and reconstructed from its
multiscale differential components via spline technique. As an
example, the second directional derivative case is considered.
The gradient operator case was discussed in [9] and in fact
can be further refined using spline technique.

A usual approach for edge detection is to detect the zero-
crossings of the second directional derivative of the smoothed
image along the gradient orientation

(39)

We can also use the recursive procedure to compute the three
directional derivative components or wavelet transforms

(40)

(41)

(42)

where the three directional wavelets are defined as

(43)

For clarity, here we denote and the transfer functions
of the first and second order of difference operators,
given by (23) and (24). Then, from these definitions we can
obtain a recursive algorithm for the computation of these three
local partial derivative components along the dyadic sequences

:

(44)

where represents the separable convolution of
the rows and columns of the image with the 1-D filters
and , respectively. The symbol denotes the Dirac
filter whose impulse is one at the origin and zero elsewhere.

In order to obtain the reconstruct formula, we design the
following perfect reconstruction condition:

(45)

where correspond to and satisfy the
perfect reconstruction condition specified by (28).

.
Using this condition it is easy to obtain the following

discrete reconstruction formula:

(46)

where , are the FIR’s

of the transfer function , and are
impulse responses of and .

Furthermore, if we define the three corresponding recon-
struction wavelets as

(47)

then the image can be recovered from the
three directional derivative components in the
continuous form as

(48)

Fig. 5 illustrates this algorithm procedure. The dyadic de-
composition and reconstruction of a simulated image using
three directional derivative components are displayed. Since
all the filters in the decomposition and reconstruction formulae
are binomials, only addition is needed.



1764 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

Fig. 5. Representation of a simulated 512� 512 image by its second-order of directional derivative components at dyadic scales. The order ofB-splines
used is four. At the top row is the simulated square image and at the bottom row is the reconstructed image. Between them are the smoothing part and
the directional decompositions along the horizontal, vertical, and diagonal orientations at dyadic scales 1, 2, and 4, respectively. Using spline technique,
the decomposition and reconstruction can be efficiently computed using only additions.

B. Decomposition and Reconstruction of Images
from Multiscale LoG-Like Components

Another widely used differential operator is the Laplacian
operator:

(49)

which is isotropic with respect to the orientation. Torre and
Poggio [12] have carried an extensive investigation on the
relationship between the Laplacian and the second directional
operators. In practice, the Laplacian of Gaussian (LoG) oper-
ator is widely used for multiscale image analysis [3]. In this
section we attempt to find similar filter bank algorithms to
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decompose and reconstruct images using multiscale LoG-like
components.

Our starting point is to consider the multiresolution approxi-
mation on the circle. The perfect reconstruction condition (28)
in 1-D case are extended to the 2-D polar coordinate case as

(50)

and the decomposition and reconstruction filters are
given by

(51)

(52)

where the radius

is taken such that these filters are defined in a finite domain.
The 2-D nonseparable scaling or smoothing function is

defined by

(53)

which is theradial -spline of order . The isotropic wavelet
function and the reconstruction wavelets are defined by

(54)

(55)

The impulse responses of these isotropic filters can be obtained
by a 2-D inverse Fourier transform or through the Hankel
transform due to the symmetry of these filters with the
orientation. Hence, the impulse functions are related to the
Bessel functions. The discrete analog of the Gaussian kernel
derives from the modified Bessel functions in [18]. In Fig. 7
the scaling function , the wavelet , and the reconstruction
wavelet are shown when . We see from (53) and (54)

are actually the good approximations of the Mexican hat
or LoG wavelet.

For this type of wavelet transform, we can still derive filter
bank algorithms for the decomposition and reconstruction as
in the 1-D case. Defining the smoothing operation and
wavelet transform as the 2-D convolutions of images
with the scaling function (53) and LoG-like wavelets (54), the
recursive decomposition formula reads,

(56)

In the decomposition two components are obtained at each
scale and the decomposition is implemented through the
convolution with the 2-D nonseparable filter masks and

in the time domain.

Through (50) the reconstruction formula is given by

(57)

where the transfer functions of the 2-D filters
are governed by the condition (50) in the polar coordinates.
Through such a condition it is easy to show using the same
arguments as in the 1-D case that an image can be
represented in the continuous form by its isotropic components

as

(58)

where is the reconstruction wavelet defined by (55).
In Fig. 6, the decomposition and reconstruction of a sim-

ulated image using the above formulae at several scales are
displayed. The image is decomposed into two parts at each
scale, one is the smoothed part and the other is the wavelet
detail part. And the image can be synthesized from these two
parts at multiple scales.

We find that when the above designed filters are
similar to those designed by Croft and Robinson [32] where
they have used them for edge based image coding.

V. IMAGE REPRESENTATION BYMULTISCALE AND

MULTIDIRECTIONAL DERIVATIVE COMPONENTS

A. Motivation

Oriented filters play a very important role in many vision
tasks [30], [33], [34], such as the texture analysis, edge
detection, motion analysis, image enhancement and so on. For
example, Daugman [33] has applied 2-D Gabor bases to stress
the importance of image orientation analysis. In this section,
we would like to design multiscale filters with the orientation
tunings such that the images can be synthesized from these
multiscale and multidirectional bases.

Let us recall that in Section IV-A, in order to make the
images to be synthesized from their vertical, horizontal and
diagonal components, the designed transfer filter should satisfy
the condition (45). We rewrite this condition as

(59)

where

(60)

In other words, in order to do the directional decomposition
and synthesis this identity has to be satisfied.
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Fig. 6. Multiscale isotropic decompositions using filters shown in Fig. 7. At
the top row is the simulated image and at the bottom row is the reconstructed
image. Between them are the smoothing parts and the LoG-like components
at dyadic scales 1, 2, and 4, respectively. The peanut-shaped homogeneous
region appears due to the isotropic diffusion.

In this section, our purpose is to generalize the above
case which decomposes an image along three orientations
to a more general one. In other words, we will provide an
alternative approach to decompose an image into dyadic scale
derivative components with different orientation tunings. A

Fig. 7. Isotropic decomposition and reconstruction filters. Upper left: the
scaling function (the radialB-spline of order four) for decomposition; upper
right: the LoG-like wavelet function for decomposition; lower left: the
wavelet function for reconstruction; lower right: the smoothing function for
reconstruction, the same as in the upper left.

more general perfect reconstruction condition than (59) for
directional decomposition is presented in the design.

B. Design of Multiscale and Multidirectional Filters

Suppose the decomposition and synthesis filters are separa-
ble in the polar coordinates. That is, they can be written as the
product of a radial function and angular function

where and are the polar coordinates of the frequency
domain. A shift of with respect to its argument cor-
responds to rotation of the 2-D basis function .
In the following design, the images are subdivided into a
collection of subbands localized in both scales and orien-
tations. The multiscale features are reflected by a recursive
system guaranteed by (50) as in the Laplacian operator case.
The oriented components are constrained by the following
generalized Pythagorean theorem.

Theorem 1: The following generalized Pythagorean for-
mula holds

(61)
where

. The proof is left in the Appendix
B. If , it becomes the following form of the
usual Pythagorean theorem

So we call (61) the generalized Pythagorean theorem. This
identity can be useful in many other occasions, since it
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indicates that a radial vector can be synthesized from
a finite number of directional components of its projections
along equally spaced angles. In detail

(62)

where

(63)

where the angular components are distributed over a circle.
This is quite similar to the back-projection theorem arising in
tomography when reconstructing a scalar field from its Radon
transform along the continuous angles.

Now we can present the design principle and procedure in
three steps.

1) Design the radial filter as (51) and
(52) as in the Laplacian case such that they satisfy the
following perfect reconstruction condition

(64)

2) Multiply the radial decomposition filter by the
angular response functions to obtain the oriented
filters for decomposition

(65)

where is taken as in (63). Similarly, the oriented
reconstruction filter can be obtained by

(66)

3) Perform the 2-D inverse Fourier transform of to
obtain the impulse responses in the time domain.

Once we get the decomposition and reconstruction filters
, the oriented wavelet functions for decomposition

and reconstruction can be defined as

(67)

(68)

where the scaling function is given by the th-order
radial -spline(53) in the polar coordinates. One can see that
the above defined wavelets are obtained from the Mexican-
like wavelet, but tuned to different orientations. In the above
design, the angular part can be replaced with its absolute value

, then the designed decomposition filters are angularly
even-symmetric. This type of filters can be called filters with
even phases, while the above designed filters are called filters
with odd phases. This quadrature pair of filters differing in
phase by can be used to extract different types of edges
of images. The role of this pair of filters can be very similar
to the complex Gabor wavelets [11], [33], [34]; nevertheless,
using these filters computational efficiency can be obtained.

Having computed these multiscale oriented filters, we can
perform the dyadic multidirectional wavelet decompositions

using the following recursive
algorithm:

(69)

where is the 2-D radial smoothing filter mask in the time
domain and is the wavelet decomposition filter mask. The
different orientations are indexed by.

According to the above design procedure, it is easy to verify
that the following perfect reconstruction condition holds:

(70)

Then the reconstruction formula is given as

(71)

Furthermore, the following relation can be easily inferred

(72)

Hence, an image can be represented in the contin-
uous form from its multiscale and multidirectional components

as

(73)
It indicates that an image can be decomposed as the linear
weighted sum of the oriented basis functions at
dyadic scales. The weights reflect the edge information
of images at both scales and orientations.

As an example, take , and then the angular
components in this case are

According to (65), we obtain the decomposition filters
tuned to 0, 45 , 90 , 135 , whose impulse

responses in the time domain are shown in Fig. 8.
Fig. 9 are the decompositions and reconstruction of a texture

image, which demonstrates the orientation information along
four directions. The role of this decomposition is similar
to that of the compass operators [29]. However, using our
algorithm the images can not only be decomposed into as
many orientations as desired but also can be recovered from
these oriented components distributed at the dyadic scales.

A scheme for multiscale derivative computation was de-
scribed in [31]. The orientation tuning is constrained by the
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Fig. 8. Four oriented decomposition filters tuned to the orientations 0�, 45�,
90�, 135�, respectively. Here for illustration only four oriented filters are
chosen. One can choose the filters to have as many orientational turnings as
desired.

property of steerability [30] and the radial scaling components
are constrained by a more tight recursive system. In com-
parison with this architecture, our proposed system is more
redundant. The angular components are constrained by (61)
and the radial components are required to satisfy (64). There
is no down-sampling at each step of decompositions.

The Matlab code for generating the oriented wavelets
can be obtained at http://wavelets. math.nus.edu.sg/˜wyp/
download_software/wavorien.m.

VI. DISCUSSIONS

A. Relation with the Classical Gaussian
Scale-Space Approaches

The well-known scaling theorem [36], [37], states that the
Gaussian is the only kernel with the embedding property; it
states that the number of zero-crossings does not increase as
the scale becomes larger. For this reason, the classical scale-
space is mainly based on the Gaussian kernel. One interesting
point worth mentioning is the asymptotic behavior of the
proposed spline wavelets as the order goes to infinity. The
attractiveness of the spline wavelets would be their asymp-
totic convergence to the well-known edge detectors and their
computational advantages. This establishes a rigorous link to
Gaussian which has been shown to be optimal in minimizing
information uncertainty, and has been used in a few famous
edge detectors such as those of Marr–Hildreth [3] and Canny
[5]. In the discrete implementation, the-spline kernels also
posses the scaling property like the Gaussian kernel [20].
The common properties shared by-splines and Gaussian
in a discrete setting can be understood in the framework of
the total-positivity theory as memberships topólya frequency
classes [18]. Other properties such as the behaviors of edge
patterns, the fingerprint theorem also holds in such case. For
detailed discussions, refer to [20]. The most notable advan-
tage of such representations in comparison with the classical
multiscale approaches is their computational efficiency.

B. Relation with the Compact Wavelet Models

Multiscale differential operators such as the gradient op-
erators and LoG operators have been widely used for im-
age geometrical descriptions. However, it has not been clear
whether the images can be recovered from these operators.
Like the wavelets models [8], such representations can be
made to be invertible, as shown in the paper. For discrete im-
plementation, fast pyramid-like algorithms can also be derived.
Different from the orthonormal wavelets models [8], [11], such
representations are a little less compact and therefore retains
some nice properties which are lack in orthonormal wavelet
representations such as theshift invariance. For example, in
denoising such type of wavelet representations has proved to
be superior to the compact wavelet representations, which is
subject to weaker visual artifacts [27].

C. On Visual Physiology and Psychophysics

A usual way to represent a signal by its differential operators
is the Taylor polynomial expansion. Another used approach
is the Hermite basis functions [40]. This paper proposes
new mathematical methods. Since the power spectrum of the
th-order differential operator is proportional to which

corresponds to the spectrum of the fractal Brownian motion
(fBm), the differential operations are usually regarded as the
fBm process [41]. Therefore, in the stochastic sense the paper
presents a family of models to synthesis a stochastic process
from the fBm of certain orders diffused along the dyadic time
scales in different forms, either isotropically or directionally.
Also, it is not difficult to understand that the details of
image information are carried on these wavelet representations
since the fBm model is usually used to describe a variety
of irregular structures like the textures. Multiscale spline
approximations and differential operations are complementary
techniques. One is aiming at extracting the deterministic
components by diffusing the perturbation spatially while the
other is to detect the stochastic components [41]. Moreover,
neurophysiological studies by Young have provided evidence
that there are receptive fields in the mammalian retina and
visual cortex, whose measured response profiles can be very
well modeled by Gaussian derivatives [18], [39]. Therefore,
the proposed representation in the paper can be interpreted as
one model for human visual modeling.

D. Comments on the Spline Approaches

The uniform -splines are the only spline functions which
are refinable and their shifts constitute a Riesz basis of
[22] or [15]. For this reason, we use -splines for
multiscale geometry analysis. In our opinion, the-spline
derivation is quite enlightening, as it elucidates the relation-
ship between the edge detectors characterized by smoothed
differentiation and the wavelets characterized by the two-scale
difference equation. The explicit time domain expression for
the FIR filters will be very useful in practice. Since these FIR
filters are binomials, the wavelet algorithm can be realized
only by addition operation. It should be noted that spline
techniques have been widely used for fast implementation of
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Fig. 9. Multiscale and multidirectional decompositions of a texture image using four oriented filters as shown in Fig. 8. At the top row is the simulated
image and at the bottom row is the reconstructed image. Between them are the smoothing parts and the wavelet decompositions along four orientations at
dyadic scales 1, 2, and 4, respectively. The filter size used was 7� 7; a larger sized mask can achieve a high precision of reconstruction.

Gaussian scale-space filtering in computer vision even before
the appearance of wavelets (for example, see [24] and [25]).

E. Comments on the Applications of Such Representations

Since the proposed representations have provided efficient
and invertible representations of images, they can be very
useful for geometry based applications. Some existing tech-
nology based on multiscale edge information can be found
in [9], [28], and [32]. By making use of the multiscale
geometric information offered by these representations, many
other applications such as the stereo matching, edge based

coding, filtering, enhancement, local orientation analysis can
be done. We have used these representations for multiscale
shape analysis [21]. We hope further applications can be
exploited using the efficient algorithms developed in this
paper.

VII. CONCLUSIONS

In this paper, efficient algorithms are designed for multiscale
computations and representations of images using different
types of differential operators such as the directional derivative
and Laplacian operators. In particular, a general approach is
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presented to represent images by their multiscale and multi-
directional derivative components. For each type of wavelets,
both the decomposition and reconstruction filter bank algo-
rithms are derived for practical implementation. The proposed
representations provide meaningful geometric information of
images and hence can be useful for further applications.

APPENDIX A
RELATIONS BETWEEN -SPLINES,

BINOMIALS, AND THE FILTER BANKS

In Section III-A the -spline wavelets (16) and (18) are
selected as the first or second derivatives of-splines. By
this method, we arrive at the two-scale relations (11) and
(21), where is just the binomial filter, and is the first or
second order of difference operators. Conversely, if we define
the filters and as binomials and difference operators
respectively, the scaling function and the wavelets will be

-splines and their derivatives. Now we show their relations.
Consider the equivalent octave band nonsubsampled filter

bank at level

(74)

(75)

In fact , are the equivalent frequency impulses
of the dyadic wavelet transform and the smoothing
approximation at dyadic scale directly from scale one.

Then, define the continuous functions and by
the finite impulse responses , of , , i.e.,

with , defined as binomial and difference operators.
Suppose the above definition converges in the sense,
then define and by

it is not difficult to prove that these two functions are the
-splines (3) and -spline wavelets (16) and (18). Since

and

so

i.e., is the -spline of order . The proof for
follows a similar procedure.

The above approach presents an intrinsic understanding
of how the continuous -splines can be obtained from the
binomials. This is also closely related to the subdivision
scheme [26].

APPENDIX B
PROOF OF THEGENERALIZED PYTHAGOREAN THEOREM

We give the proof using the mathematical induction. First,
we will show that the formula holds for

(76)

or equivalently

which is equivalent to the sum of unit vectors distributed
over an unit circle on complex plane. From the principle of
geometry, this actually holds since the center of gravity of
a polygon lies in the origin. Suppose now if ,
the formula (61) holds. Let’s show this is true for the case

. For simplicity, denote

Taking second order derivative with respect to, it’s not
difficult to verify that satisfy the following
second-order ordinary differential equation (ODE)

Since is a constant , the solution
of the above equation should be

where is the constant coefficient to be determined.
Because is an even function, then .
Moreover, is periodic with , it follows
that . Therefore, the solution becomes

This completes the proof by the mathematical induction.
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